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Abstract

Biomarker-guided personalized therapies o�er great promise to improve drug development and improve

patient care, but also pose di�cult challenges in designing clinical trials for the development and validation

of these therapies. We �rst give a review of the existing approaches, brie�y for clinical trials in new drug

development and in more detail for comparative e�ectiveness trials involving approved treatments. We

then introduce new group sequential designs to develop and test personalized treatment strategies involving

approved treatments.

Keywords: adaptive randomization, biomarker classi�ers, generalized likelihood ratio statistics, group

sequential design, multiple testing, targeted therapies.

1. Introduction

The development of imatinib (Gleevec), the �rst drug to target the genetic e�ects of chronic myeloid

leukemia (CML) while leaving healthy cells unharmed, has revolutionized the treatment of cancer, leading

to hundreds of kinase inhibitors and other targeted drugs that are in various stages of development in the

anticancer drug pipeline. However, most new targeted treatments have resulted in only modest clinical

bene�t, with less than 50% remission rates and less than one year of progression-free survival. While

the targeted treatments are devised to attack speci�c targets, the �one size �ts all� treatment regimens

commonly used may have diminished their e�ectiveness. In contrast, trastuzumab (Herceptin), which treats

only patients with HER-2 positive metastatic breast cancer, has better remission rate and longer progression-

free survival because it targets the �right� patient population. Genome-guided and risk-adapted personalized

therapies of this kind are expected to substantially improve the e�ectiveness of these treatments.

Although personalized therapies that are tailored for individual patients have great promise to improve

drug development and patient care, there are challenges in designing clinical trials for the development and
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validation of these therapies because traditional trial designs often require large sample sizes that far exceed

practical constraints on funding and study duration. Adaptive designs have been proposed to overcome

these challenges in new drug development for regulatory approval. There are two important preliminaries

in designing a phase III clinical trial for such drugs. One is to identify the biomarkers that are predictive of

response, and the other is to develop a biomarker classi�er that identi�es patients who are sensitive to the

treatment, denoted Dx+. An example is Herceptin, for which strong evidence of the relationship between

the biomarker, HER2, and the drug e�ect was found early and led to narrowing the patient recruitment to

HER2-positive patients in the phase III trial. In the ideal setting that the biomarker classi�er can partition

the patient population into drug-sensitive (Dx+) and drug-resistant (Dx-) subgroups, it is clear that Dx-

patients should be excluded from the clinical trial. In practice, however, the cut-point for the Dx+ group is

often based on data from early phase trials with relatively small sample sizes and has substantial statistical

uncertainty (variability). Thus, a dilemma arises at the design stage of the phase III trial. Should the trial

only recruit Dx+ patients who tend to have larger e�ect size, or should it have broad eligibility from the

entire intended-to-treat (ITT) patient population but a diluted overall treatment e�ect size? The former has

the disadvantage of an overly stringent exclusion criterion that misses a large fraction of patients who can

bene�t from the treatment if the classi�er imposes relatively low false positive rate for Dx+ patients, while

the latter has the disadvantage of ending up with an insigni�cant treatment e�ect by including patients

that do not bene�t from the treatment. To address this dilemma in the context of a phase III trial with a

time-to-event endpoint, Brannath et al. [1] propose a two-stage trial design, in which the selection of the

ITT or Dx+ population is performed based on conditional power at the �rst interim analysis. For the �nal

analysis, a weighted combination of the second-stage p-value (based on the second-stage data) and the �rst-

stage p-value, together with Simes' step-up procedure [2] to adjust for multiple testing, are used to ensure

that the adaptive test maintains the prescribed type I error of the phase III trial. Jenkins et al. [3] extend

the design of Brannath et al. to a phase II-III trial in which the phase II trial has a short-term survival

endpoint that is used to select the ITT or Dx+ population for the phase III trial with a long-term survival

endpoint. Earlier Wang et al. [4] have introduced a similar design for normally distributed outcomes. The

basic idea underlying these adaptive designs is to use a weighting scheme of the form S1+γS2 that combines

the �rst-stage and second-stage test statistics S1 and S2 or to choose the critical value of the Studentized

second-stage statistic as some function of that of the �rst-stage to preserve the type I error probability; see

[5, Section 8.1.2].

The main focus of this paper is on designing clinical trials for the development and validation of personal-

ized therapies based on approved cancer treatments, which usually have well-understood molecular targets,

mechanisms of action, and mechanisms of resistance. It is natural to try to use this information in con-
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junction with the patient's biomarkers that can predict sensitivity or resistance to the treatments, thereby

developing a biomarker-guided strategy (BGS) to personalize treatment selection for the individual patients.

After a review of previous methods in the literature, we introduce new group sequential designs in Section

2. Statistical inference in these designs is also discussed, and Section 3 demonstrates their advantages in

simulation studies after providing implementation details. Section 4 gives further discussion and concluding

remarks.

2. Development and Validation Trials for Biomarker-Guided Personalized Therapies

2.1. Review of existing approaches

Simon [6] has considered the development of biomarker classi�ers for treatment selection and the design

of validation trials for comparing a BGS to �standard of care� (SOC) that does not use the biomarkers to

select treatments. For the validation trial, which he regards as an analog of a phase III trial, he shows

that the biomarker-strategy design which randomizes patients to BGS and SOC is ine�cient and proposes

an enrichment design as an alternative. He also points out that development studies of the BGS �are often

based on a convenience sample of patients for whom tissue is available but who are heterogeneous with regard

to treatment and stage,� and have the goal of developing a genomic classi�er and evaluating its predictive

accuracy by split-sample methods or cross-validation. The estimated predictive accuracy can be used to

determine whether the classi�er �is promising and worthy of phase III evaluation,� analogous to phase II

clinical trials. A di�culty with this approach is that the convenience sample comes from observational

studies which have �no speci�c eligibility criteria, no primary endpoint or hypotheses and no de�ned analysis

plan,� but which often involve �multiple biomarkers to evaluate, multiple ways of measuring and combining

the candidate biomarkers.� Although it would be desirable to base the development of BGS on data from

well designed clinical trials, it is di�cult to obtain funding for such trials in practice. On the other hand,

if the estimated predictive accuracy for the BGS developed from the convenience sample shows promise,

then it may be possible to obtain funding for the validation trial. This is similar to phase I and II cancer

trials that are single-arm and limited to relatively small sample sizes. Only after the phase II trial provides

signi�cant results showing that the new treatment has better response rate than some historical control rate

can a randomized phase III trial with a survival endpoint be conducted. The limitations of these designs are

discussed by Lai et al. [7] who point out in particular that the data that suggest the BGS �are preliminary

and do not provide a uniform level of con�dence in the recommendations made in each stratum.�

Recognizing these limitations of the BGS developed, Lai et al. [7] propose to test in the validation

trial not only the strategy null hypothesis de�ned by the BGS but also an intersection null hypothesis
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H0 : pj1 = · · · = pjK for 1 ≤ j ≤ J in the case of J biomarker-classi�ed patient subgroups and K treatments

to choose from, where pjk denotes the response rate of the jth subgroup to the kth treatment. Rejection

of H0 implies that there is some biomarker strategy, not necessarily the BGS set up for validation, that

has better response rate than random assignment of the K treatments. If the biomarker strategy coincides

with the BGS, this already validates the BGS. Even if it is not the case and the strategy null hypothesis

is not rejected, the biomarker strategy that rejects H0 would guide further development. In this way, the

validation trial can be used not only to test the BGS but also to continue learning biomarker strategies from

the clinical trial data. The strategy null hypothesis is H∗
0 :

∑J
j=1 πj (Pj − q̄j) ≤ 0, where πj is the prevalence

of subgroup j, Pj is the average response of patients in subgroup j to the treatment recommended by the

BGS and q̄j is that to the treatments not recommended by the BGS, which is what an enrichment design

attempts to test. As pointed out by Lai et al. [7], H∗
0 represents a �hypothetical version� of SOC that assumes

equal probabilities of choosing the K treatments in a biomarker subgroup, �lacking a true representation of

a physician's choice condition.�

Mandrekar and Sargent [8] give a review of designs of clinical trials for predictive biomarker validation

in the context of real trials, and discuss their merits and limitations. In particular, they consider the

�biomarker-strati�ed design� that randomizes patients to treatments within each biomarker class and focuses

on the treatment-marker interaction in the analysis plan, with the MARVEL (marker validation of erlotinib

in lung cancer) study as an example for which the sample size is prospectively speci�ed separately for each

biomarker class. They also describe prospectively speci�ed analysis of data from a previously conducted

RCT comparing treatments, but point out that �while a well conducted retrospective validation study may

be accepted as a marker validation strategy in certain instances, the gold standard for predictive marker

validation continues (appropriately) to be a prospective RCT.�

A Bayesian alternative to frequentist testing of BGS is described by Zhou et al. [9] and Lee et al. [10]

for the BATTLE (Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination)

trial of personalized therapies for non-small cell lung cancer (NSCLC). As pointed out by [11, pp. 45-

46] concerning the biomarker classi�ers, �the signaling pathways and targeted agents were selected on the

basis of the highest scienti�c and clinical interest at the time (2005)� and included EGFR mutation/copy

number ampli�cation, KRAS/BRAF mutation, VEGF/VEGFR expression and RXR/CyclinD1 expression,

together with the recommended targeted agent for each; see Fig. 1 and refs. 9-12 of [11]. Although this

provides a BGS similar to Simon's framework, the BATTLE trial uses an adaptive randomization scheme

to select K = 4 treatments for n = 255 NSCLC patients belonging to J = 5 biomarker classes, one of

which contains patients whose biomarker scores are all negative. Let ymjk denote the indicator variable of

disease control, which is de�ned by progression-free survival at 8 weeks after treatment, of the mth patient
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in class j receiving treatment k. The adaptive randomization scheme is based on a Bayesian probit model

for pjk = P (ymjk = 1) = P (ξmjk > 0), where ξmjk is assumed to be a latent normal random variable with

variance 1 and mean µjk ∼ N
(
ϕk, σ

2
)
such that ϕk ∼ N

(
0, τ2

)
. Large values of τ2 in the hierarchical

Bayesian model can be used to approximate a vague prior. The posterior mean γ
(t)
jk of pjk given all the

observed indicator variables up to time t can be computed by Gibbs sampling. Letting γ̂
(t)
jk = max

(
γ
(t)
jk , 0.1

)
,

the randomization proportion for a patient in the jth class to receive treatment j at time t+1 is proportional

to γ̂
(t)
jk . Moreover, a re�nement of this scheme allows suspension of treatment k from randomization to a

biomarker subgroup.

The results of the BATTLE trial are reported by Kim et al. [11, pp. 46-48, 52]. Despite applying the

Bayesian approach to adaptive randomization, �standard statistical methods (used in the Results section)

included the Fisher's exact test for contingency tables and log-rank test for survival data� together with

standard con�dence intervals based on normal approximations, without adjustments for Bayesian adaptive

randomization (AR) and possible treatment suspension, even though Zhou et al. [9] have noted that �one

known rami�cation of the AR design is that it results in biased estimates due to dependent samples.� The

overall 8-week disease control rate (DCR) using the biomarker-guided AR scheme was 46%, compared to �the

historical 30% DCR estimate in similar patients (ref. 14)�, showing that the �learn-as-we-go� approach in

Bayesian AR can indeed �leverage accumulating patient data to improve the treatment outcome� by �allowing

more patients to be assigned to more e�ective therapies and fewer patients to be assigned to less e�ective

therapies.�; see [11, pp. 46, 52].

Note that unlike Simon's enrichment design that randomizes patients to SOC and the BGS to be validated,

the BATTLE design aims at showing that the AR treatment assignment has higher DCR than some historical

estimate of the DCR of SOC. In their discussion, Kim et al. [11, pp. 49-50] describe what they have

learned from the BATTLE trial for a future BATTLE-2 trial, which will use EGFR mutations rather than

EGFR mutation/copy number to narrow the biomarker subgroup because �EGFR mutations were far more

predictive� and which will not use RXR that �had little, if any, predictive value in optimizing treatments.�

In their framework, AR provides a design for simultaneously treating patients with a given set of approved

targeted agents based on the patients' biomarker pro�les, and learning the treatment allocation rule from

accumulating data.

The preceding paragraph shows that the BATTLE and BATTLE-2 trials share the philosophy of the

classical multi-arm bandit problem. Suppose there are K treatments of unknown e�cacy to be chosen

sequentially to treat a large class of n patients. How should we allocate the treatments to maximize the mean

treatment e�ect? Lai and Robbins [12] and Lai [13] consider the problem in the setting where the treatment

e�ect has a density function f (x; θk) for the kth treatment, where the θk are unknown parameters. There

5



is an apparent dilemma between the need to learn the unknown parameters and the objective of allocating

patients to the best treatment to maximize the total treatment e�ect Sn = X1+· · ·+Xn for the n patients. If

the θk were known, then the optimal rule would use the treatment with parameter θ∗ = argmax1≤k≤K µ (θk),

where µ (θ) = Eθ (X). In ignorance of θk, Lai and Robbins [12] de�ne the regret of an allocation rule by

Rn (θ) = nµ (θ∗)− Eθ (Sn) =
∑

k:µ(θk)<µ(θ∗)

(µ (θ∗)− µ (θk))EθTn (k) ,

where Tn (k) is the number of patients receiving treatment k. They show that adaptive allocation rules can

be constructed to attain the asymptotically minimal order of log n for the regret, in contrast to the regret

of order n for the traditional equal randomization rule that assigns patients to each treatment with equal

probability 1/K. A subsequent re�nement by Lai [13] shows the relatively simple rule that chooses the

treatment with the largest upper con�dence bound U
(n)
k for θk to be asymptotically optimal if the upper

con�dence bound at stage n, with n > k, is de�ned by

U
(n)
k = inf

{
θ ∈ A : θ ≥ θ̂k and 2Tn (k) I

(
θ̂k, θ

)
≥ h2 (Tn (k) /n)

}
,

where inf ∅ = ∞, A is some open interval known to contain θ, θ̂k is the maximum likelihood estimate of θk.

I (θ, λ) is the Kullback-Leibler information number, and the function h has a closed-form approximation.

For the �rst K stages, the K treatments are assigned successively. It is noted in [14, p. 97] that the upper

con�dence bound U
(n)
k corresponds to inverting a generalized likelihood ratio (GLR) test based on the GLR

statistic Tn (k) I
(
θ̂k, θ

)
for testing θk = θ.

2.2. An adaptive design combining multiple objectives

The multi-arm bandit problem has the same �learn-as-we-go� spirit of the BATTLE trial and focuses on

attaining the best response rate for patients in the trial. However, such a trial does not establish which

treatment is the best for future patients, with a guaranteed probability of correct selection. We now describe

a group sequential design for jointly developing and testing treatment recommendations for biomarker classes,

while using multi-armed bandit ideas to provide sequentially optimizing treatments to patients in the trial.

Thus, the design has to ful�ll multiple objectives, which include (a) treating accrued patients with the

best (yet unknown) available treatment, (b) developing a treatment strategy for future patients, and (c)

demonstrating that the strategy developed indeed has better treatment e�ect than the historical mean e�ect

of SOC plus a predetermined threshold. In a group sequential trial, sequential decisions are made only at

times of interim analysis. Let ni denote the total sample size up to the time of the ith analysis, i = 1, · · · , I,

so that nI is the total sample size by the scheduled end of the trial, and let nij be the total sample size from
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biomarker class j up to the time of the ith analysis, hence ni =
∑J
j=1 nij . Because of the need for informed

consent, the treatment allocation that uses the aforementioned upper con�dence bound rule is no longer

appropriate. It is unlikely for patients to consent to being assigned to a seemingly inferior treatment for

the sake of collecting more information to ensure that it is signi�cantly inferior (as measured by the upper

con�dence bounds). Instead, randomization in a double blind setting is required, and the randomization

probability π
(i)
jk , determined at the ith interim analysis, of assigning a patient in group j to treatment k

cannot be too small to suggest obvious inferiority of the treatments being tried, that is,

π
(i)
jk ≥ ϵ for some 0 < ϵ < 1/K.

We now describe the adaptive randomization rule. The unknown mean treatment e�ect µjk of treatment

k in biomarker class j can be estimated by the sample mean µ̂ijk at interim analysis i. Let kj = argmaxk µjk,

which can be estimated by k̂ij = argmaxk µ̂ijk at the ith interim analysis. Analogy with multi-arm bandit

theory suggests assigning the highest randomization probability to treatment k̂ij and randomizing to the

other available treatments in biomarker class j with probability ϵ. Because the randomization probabilities

are only updated at interim analyses in a group sequential design and because k̂ij may �uctuate over i among

treatments whose treatment e�ects do not di�er by more than δij , it is more stable to lump these �nearby�

treatments into the set

Hij =
{
k ∈ Kij :

∣∣µ̂∗
ij − µ̂ijk

∣∣ ≤ δij
}
, (1)

where µ̂∗
ij = µ̂ijk̂ij and Kij is the set of available treatments in biomarker class j at interim analysis i. The

randomization probabilities π
(i)
jk are therefore determined at the ith interim analysis by

π
(i)
jk = ϵ for k ∈ Kij\Hij , π

(i)
jk = (1− |Kij\Hij | ϵ) / |Hij | for k ∈ Hij , (2)

where we use |A| to denote the number of elements of a �nite set A. Equal randomization is used up to

the �rst interim analysis. In Section 3.1, we carry out a simulation study of the performance of this design

for the objective of treating patients in the trial with the best available treatments, and compare it with an

alternative adaptive randomization scheme proposed by Zhou et al. [9] for the BATTLE trial and modi�ed

by Lai et al. [7].

Besides treating patients in the trial with the best available treatment, the group sequential design can

also be used to address testing and inference questions, with guaranteed error probabilities, that are of

basic interest to personalized treatment selection for future patients based on their biomarkers. We use

GLR statistics and modi�ed Haybittle-Peto stopping rules introduced by Lai and Shih [15] to include early
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elimination of signi�cantly inferior treatments from a biomarker class. Following [13] and [15], we assume

an exponential family of distributions for the treatment e�ects, with density function fθ (x) = eθx−ψ(x) with

respect to some probability measure ν on Θ =
{
θ :
´
eθxdν (x) <∞

}
, where θ depends on the treatment

k and biomarker class j and will be de�ned by θjk. In the exponential family, the mean µ is ψ′ (θ) and

θ = θµ = (ψ′)
−1

(µ) since ψ−1 is a smooth increasing function on Θ. The maximum likelihood estimate

(MLE) of µ is the sample mean µ̂, and we let µ̂ijk denote the average treatment e�ect of treatment k in

biomarker class j at interim analysis i. The Kullback-Leibler information number is

I (µ, µ′) = Eθµ
{
log

[
fθµ (X) /fθµ′ (X)

]}
= (θµ − θµ′)µ− [ψ (θµ)− ψ (θµ′)] .

Let nijk be the total sample from biomarker class j receiving treatment k up to the ith interim analysis, so

nij =
∑K
k=1 nijk. Let

lij (k, k
′) = nijk

{
µ̂ijkθµ̂ijk

− ψ
(
θµ̂ijk

)}
+ nijk′

{
µ̂ijk′θµ̂ijk′ − ψ

(
θµ̂ijk′

)}
− (nijk + nijk′) {µ̄θµ̄ − ψ (θµ̄)} , (3)

where µ̄ = (nijkµ̂ijk + nijk′ µ̂ijk′) / (nijk + nijk′). Let µjk = ψ′ (θjk). As shown by Brezzi and Lai [14,

p. 103] who also recommend constraining the MLE to a compact subset of ψ (Θ) on which ψ′′ is uniformly

continuous, lij (k, k
′) is the GLR statistic at the ith interim analysis for testing the null hypothesis µjk = µjk′

and plays a basic role in constructing the upper con�dence bound rule in the multi-arm bandits from the

exponential family.

We now propose an elimination scheme based on the GLR statistic (3) with a guaranteed probability of

1 − α that the best for each biomarker class is not eliminated. At the ith analysis (1 ≤ i ≤ I), treatment

k ̸= k̂ij is eliminated for the biomarker class j if lij

(
k, k̂ij

)
≥ aα. The computation of aα is described in

Section 3.2. This elimination scheme is also related to the second objective of the trial, which is inference,

at the end of the trial, on which treatment strategy is best for future patients. To accomplish the above

objective, we use subset selection ideas from the selection and ranking literature [16, 17], in which there

are two approaches to selecting the best of K treatments with guaranteed probability of correct selection.

One is the �indi�erence zone� approach, which guarantees that the probability of correctly selecting the best

treatment exceeds 1−α when the largest mean e�ect di�ers from the second largest by at least δ. In practice,

however, one does not have any idea about the distance between the largest and second largest means. To

address this di�culty, Chan and Lai [18] consider a stronger constraint that the probability of selecting a

treatment whose mean e�ect is within δ of the largest is at least 1− α. They also develop an e�cient fully
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sequential procedure to attain this. Their procedure, however, cannot be extended to a group sequential

design in which there is a prescribed upper bound on the total number of observations. An alternative to

the indi�erence zone approach is subset selection, for which the goal is to select a subset of treatments, with

a guaranteed probability of at least 1 − α that it contains the best treatment. In this approach, one also

wants the expected size of the selected subset to be as small as possible in some sense.

We extend the subset selection approach to the setting of J biomarker classes in a group sequential

design. Using the elimination scheme described in the proceeding paragraph, let Kij be the set of surviving

treatments for class j at the ith interim analysis. When Kij consists only of k̂ij , the trial recommends using

treatment k̂ij for future patients. For notational simplicity, KIj at the Ith analysis by the trial's scheduled

end will be denoted by Kj , which may contain two or more treatments. Similarly we denote µ̂Ijk by µ̂jk.

The recommended set of treatments for class j is Kj , with an overall probability guarantee of 1−α to contain

the best treatments for all classes. Whereas the probability α of incorrectly eliminating the best treatment

in subset selection corresponds to type I error in hypothesis testing, P
(∪J

j=1Bj
(
δ̄
)
̸= ∅

)
is an analog of

traditional type II error, where Bj
(
δ̄
)
=

{
k ∈ Kj : µjk < max1≤k′≤K µjk′ − δ̄

}
.

The third objective of this trial, which is to demonstrate that the developed treatment strategy improves

the mean treatment e�ect of SOC by a prescribed margin, amounts to testing the null hypothesis H∗
0 :∑J

j=1 πj max1≤k≤K µjk ≤ γ, where πj is the prevalence of biomarker class j and γ is the historical treatment

e�ect of SOC plus a prescribed margin. The GLR statistic for testing H∗
0 is

LI =
J∑
j=1

K∑
k=1

nIjk
(
µ̂jkθµ̂jk

− ψ
(
θµ̂jk

))
−

J∑
j=1

K∑
k=1

nIjk
(
µ̃jkθµ̃jk

− ψ
(
θµ̃jk

))
,

where µ̃jk is the MLE of µjk under the constraint
∑J
j=1 π̂j max1≤k≤K µjk ≤ γ, in which π̂j is the observed

prevalence of biomarker class j at the Ith (i.e., terminal) analysis. With a prescribed type I error of α̃, the

GLR test rejects H∗
0 if

LI > dα̃ and

J∑
j=1

π̂j max
1≤k≤K

µ̂jk > γ. (4)

The computation of dα̃ is described in Section 3.3.

3. Implementation and Simulation Studies

3.1. Comparison of adaptive randomization schemes

We �rst present a simulation of the performance of the preceding group sequential trial in treating

patients who have been accrued to the trial, and its performance with respect to the inferential objectives

9



relevant to future patients will be studied in Section 3.4. The adaptive randomization rule in the second

paragraph of Section 2.2, denoted by AR1, does not involve elimination in the subsequent paragraphs, which

will be studied in Section 3.4 and 3.5. It is a group sequential modi�cation of the fully sequential upper

con�dence bound (UCB) allocation rule that has been shown to minimize asymptotically the regret in the

multi-arm bandit problem, as we have noted earlier. Accordingly the simulation study will compare AR1,

which uses ϵ = 0.1 in (2), against the benchmark UCB rule in the response rate of patients receiving each

treatment (including the best and the worst) for each biomarker class. Note that AR1 is quite di�erent

from the Bayesian adaptive allocation rule in the BATTLE trial described in Section 2.1, which assumes

a hierarchical Bayesian probit model on the response rate pjk of treatment k for biomarker class j and

which uses randomization probabilities proportional to the posterior means of pjk for di�erent treatments in

each biomarker class. Since these posterior distributions, evaluated by Markov chain Monte Carlo methods,

are too computationally intensive for replicating them many times in a simulation study, we follow [7] and

replace the posterior mean at the ith interim analysis by the maximum likelihood estimate p̂
(i)
jk of pjk, under

the constraint that pjk has a priori bounds b = 0.05 and B = 0.95. The adaptive randomization rule that

uses randomization probabilities proportional to p̂
(i)
jk between interim analyses i and i+ 1, denoted AR2, is

also considered for comparison. In addition, we follow [19] and choose δij = n
−2/5
ij so that

√
nijδij → ∞ for

biomarker class j at interim analysis i.

The simulation study considers n = 1000 and the cases K = J = 3 in Table 1 and K = 4, J = 3 or 4 in

Table 2. In addition, it assumes I = 5 analyses (including the interim and �nal analyses), with equal group

sizes ni − ni−1 = 200 (i = 1, · · · , 5, n0 = 0). Table 1 studies the following scenarios for the response rates

pjk, in which the class sizes are proportional to 3 : 2 : 1 for j = 1, 2, 3.

S1 : pjk = 0.7 for j = k, pjk = 0.2 for j ̸= k.

S2 : pjk = 0.7 for j = k, p12 = p23 = p31 = 0.5, p13 = p21 = p32 = 0.2.

S3 : pjk = 0.7 for j = k, p12 = p23 = p31 = 0.65, p13 = p21 = p32 = 0.2.

Thus, each biomarker class has a unique best treatment that is substantially better than other treatments

in S1, there are treatments with moderate e�ectiveness between the best one and the worst ones for each

biomarker class in S2, and there is a treatment which is close to the best for each biomarker class in S3.

Table 2 considers scenarios S4 and S5 that are similar to the scenario 1 and 2 of the �rst simulation study

of [7], and another scenario S6 similar to that in the BATTLE trial with the RXR/CyclinD1 class (that has
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a small size) and the all-negative biomarker class removed.

S4 : p11 = p22 = 0.6, p33 = p44 = 0.75, pjk = 0.3 for j, k ∈ {1, 2, 3, 4} × {1, 2} , j ̸= k

pjk = 0.1 for j, k ∈ {3, 4} × {1, 2, 3, 4} , j ̸= k; class size proportions are 15 : 20 : 30 : 25.

S5 : p11 = 0.8, p22 = p33 = p44 = 0.6, pjk = 0.3 for j ̸= k

class size proportions are 15 : 20 : 30 : 25.

S6 : p13 = 0.6, p1k = 0.4 for k ∈ {1, 2, 4} ; p21 = p22 = 0.1, p23 = 0.3, p24 = 0.8;

p31 = p32 = 0.4, p33 = 0.1, p34 = 0.6; class size proportions are 35 : 15 : 50.

The results for each scenario in Tables 1 and 2 are based on 10000 simulations. For each allocation

rule, besides the overall mean response of the n = 1000 subjects, the tables also give in parentheses the

mean number of each (j, k) category of subjects in biomarker class j receiving treatment k and the mean

response rate in this category. For each scenario in both tables, AR1 outperforms AR2 in terms of the

overall mean response and the expected number of subjects receiving the best treatment in each biomarker

class. Moreover, the benchmark UCB rule outperforms the adaptive randomization rules as expected but is

inappropriate for applications to clinical trials that require informed consent and have operational di�culties

in implementing fully sequential procedures.

3.2. Computation of aα

The threshold aα is determined by the constraint P (best treatment for some biomarker class is eliminated) ≤

α. Fix j and order the parameter con�guration for the k treatments as θj,[1] ≥ · · · ≥ θj,[K]. Assuming

θj,[1] > θj,[2], the event of eliminating the (unique) best treatment for biomarker class j is

Aj =

{
max
k ̸=[1]

[
lij ([1] , k)1{µ̂ijk>µ̂ij,[1]}

]
≥ α for some 1 ≤ i ≤ I

}
.

Letting θj,[2] approach θj,[1] implies that we can use P∗ (Aj) to bound the probability that the best treatment

for biomarker class j is eliminated, where P∗ is the probability measure satisfying θj1 = · · · = θjK for all

1 ≤ j ≤ J . Hence aα can be determined by

α = P∗

 J∪
j=1

Aj

 =
J∑
j=1

P∗ (Aj)−
∑
j1<j2

P∗ (Aj1)P∗ (Aj2) + · · ·+ (−1)
J+1

J∏
j=1

P∗ (Aj) . (5)

in which the last equality follows from the inclusion-exclusion principle and the independence of the events

A1, · · · , AJ .
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Table 1

Mean response rate and sample size (in parentheses) for scenarios S1-S3 involving K = 3 treatments

Marker Treatment

Class 1 2 3

S1 UCB 1 0.70 (485.8) 0.20 (7.1) 0.20 (7.1)

2 0.20 (6.9) 0.70 (319.6) 0.20 (7.0)

3 0.20 (6.6) 0.20 (6.6) 0.70 (153.4)

Total 0.680 (1000)

AR1 1 0.70 (392.3) 0.20 (53.9) 0.20 (53.7)

2 0.20 (37.5) 0.70 (258.2) 0.20 (37.5)

3 0.20 (22.6) 0.20 (22.5) 0.70 (121.8)

Total 0.586 (1000)

AR2 1 0.70 (290.5) 0.20 (104.7) 0.20 (104.9)

2 0.20 (69.5) 0.70 (194.7) 0.20 (69.2)

3 0.20 (34.2) 0.20 (34.5) 0.70 (97.9)

Total 0.491 (1000)

S2 UCB 1 0.70 (466.1) 0.50 (26.9) 0.20 (7.0)

2 0.20 (6.9) 0.70 (300.3) 0.50 (26.2)

3 0.50 (21.9) 0.20 (6.5) 0.70 (138.1)

Total 0.675 (1000)

AR1 1 0.70 (332.5) 0.50 (114.1) 0.20 (53.6)

2 0.20 (36.9) 0.70 (206.0) 0.50 (90.4)

3 0.50 (54.8) 0.20 (21.4) 0.70 (90.3)

Total 0.592 (1000)

AR2 1 0.70 (234.3) 0.50 (176.5) 0.20 (89.3)

2 0.20 (59.3) 0.70 (156.4) 0.50 (117.6)

3 0.50 (58.5) 0.20 (29.4) 0.70 (78.7)

Total 0.541 (1000)

S3 UCB 1 0.70 (360.0) 0.65 (133.0) 0.20 (6.9)

2 0.20 (6.7) 0.70 (225.6) 0.65 (101.0)

3 0.65 (58.5) 0.20 (6.3) 0.70 (102.1)

Total 0.675 (1000)

AR1 1 0.70 (231.2) 0.65 (215.1) 0.20 (53.4)

2 0.20 (36.1) 0.70 (153.3) 0.65 (144.2)

3 0.65 (71.2) 0.20 (20.2) 0.70 (75.3)

Total 0.624 (1000)

AR2 1 0.70 (214.8) 0.65 (201.4) 0.20 (83.9)

2 0.20 (55.5) 0.70 (143.1) 0.65 (134.5)

3 0.65 (67.4) 0.20 (27.6) 0.70 (71.7)

Total 0.596 (1000)
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Table 2

Mean response rate and sample size (in parentheses) for scenarios S4-6 involving K = 4 treatments

Marker Class
Treatment

1 2 3 4

S4 UCB 1 0.60 (125.7) 0.30 (13.7) 0.30 (13.6) 0.30 (13.6)

2 0.30 (14.7) 0.60 (178.4) 0.30 (14.6) 0.30 (14.7)

3 0.10 (4.9) 0.10 (4.9) 0.75 (318.5) 0.10 (4.9)

4 0.10 (4.8) 0.10 (4.9) 0.10 (4.9) 0.75 (263.3)

Total 0.647 (1000)

AR1 1 0.60 (69.8) 0.30 (32.2) 0.30 (32.3) 0.30 (32.3)

2 0.30 (39.7) 0.60 (102.9) 0.30 (39.7) 0.30 (39.9)

3 0.10 (30.3) 0.10 (30.4) 0.75 (242.4) 0.10 (30.4)

4 0.10 (25.8) 0.10 (25.8) 0.10 (25.7) 0.75 (200.4)

Total 0.518 (1000)

AR2 1 0.60 (63.4) 0.30 (34.7) 0.30 (34.5) 0.30 (34.2)

2 0.30 (45.9) 0.60 (84.0) 0.30 (46.1) 0.30 (46.2)

3 0.10 (41.9) 0.10 (42.0) 0.75 (207.2) 0.10 (42.0)

4 0.10 (35.1) 0.10 (35.2) 0.10 (35.2) 0.75 (172.4)

Total 0.469 (1000)

S5 UCB 1 0.80 (147.7) 0.30 (6.3) 0.30 (6.3) 0.30 (6.3)

2 0.30 (14.4) 0.60 (178.6) 0.30 (14.5) 0.30 (14.6)

3 0.30 (15.5) 0.30 (15.5) 0.60 (287.0) 0.30 (15.4)

4 0.30 (15.0) 0.30 (15.0) 0.30 (15.2) 0.60 (232.4)

Total 0.583 (1000)

AR1 1 0.80 (104.3) 0.30 (20.7) 0.30 (20.8) 0.30 (20.8)

2 0.30 (39.7) 0.60 (102.2) 0.30 (40.0) 0.30 (40.2)

3 0.30 (51.3) 0.30 (51.4) 0.60 (179.3) 0.30 (51.5)

4 0.30 (45.7) 0.30 (46.1) 0.30 (46.1) 0.60 (139.9)

Total 0.479 (1000)

AR2 1 0.80 (72.9) 0.30 (31.1) 0.30 (31.3) 0.30 (31.2)

2 0.30 (46.2) 0.60 (84.0) 0.30 (46.0) 0.30 (46.0)

3 0.30 (69.4) 0.30 (69.3) 0.60 (125.0) 0.30 (69.8)

4 0.30 (57.7) 0.30 (57.6) 0.30 (57.9) 0.60 (104.4)

Total 0.431 (1000)

S6 UCB 1 0.40 (26.2) 0.40 (26.0) 0.60 (272.1) 0.40 (25.8)

2 0.10 (3.8) 0.10 (3.8) 0.30 (6.1) 0.80 (136.2)

3 0.40 (28.2) 0.40 (28.3) 0.10 (7.0) 0.60 (436.4)

Total 0.591 (1000)

AR1 1 0.40 (72.0) 0.40 (72.2) 0.60 (133.7) 0.40 (72.1)

2 0.10 (14.8) 0.10 (14.8) 0.30 (20.2) 0.80 (100.3)

3 0.40 (102.0) 0.40 (101.6) 0.10 (45.5) 0.60 (250.8)

Total 0.493 (1000)

AR2 1 0.40 (79.5) 0.40 (79.5) 0.60 (111.9) 0.40 (79.3)

2 0.10 (17.8) 0.10 (17.8) 0.30 (33.0) 0.80 (81.3)

3 0.40 (130.8) 0.40 (130.8) 0.10 (53.3) 0.60 (185.0)

Total 0.462 (1000)
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For �xed j, we can compute P∗ (Aj) in (5) by using recursive numerical integration as follows. Since

θj1 = · · · = θjK , we can let [1] = 1 and approximate nijk by (1 + op (1))nij/K, as the adaptive randomization

rule is asymptotically equivalent to equal randomization in this case. Moreover, the GLR statistic lij (1, k)

can be approximated by

lij (1, k) = (1 + op (1))
nij

4Kψ′′ (θµj1

) (µ̂ijk − µ̂ij1)
2
=

1

2

(
∆i
jk

)2
,

where ∆i
jk =

[
nij/

(
2Kψ

′′ (
θµj1

))]1/2
(µ̂ijk − µ̂ij1), for k ∈ {2, · · · ,K}; see [5, p. 95]. Therefore

P∗ (Aj) → P∗

{
max

1≤k≤K
∆i
jk ≥

√
2aα for some 1 ≤ i ≤ I

}
. (6)

The above probability can be computed by applying the central limit theorem to
√
nij

(
∆i
j2, · · · ,∆i

jK

)
that

has independent increments in i. In particular, for K = 3, the conditional distribution of
(
∆i+1
j2 ,∆i+1

j3

)
given(

∆i
j2,∆

i
j3

)
is

N

√
nij
ni+1,j

 ∆i
j2

∆i
j3

 , ni+1,j − nij
2ni+1,j

 2 1

1 2


 . (7)

Therefore the right-hand side of (6) can be computed by using recursive numerical integration; see [5, Sections

4.3.1 and 8.2.4] and [19, p. 452]. With this recursive procedure to compute P∗ (Aj), we can use bisection

search to �nd the aα that satis�es (5), noting that P∗

(∪J
j=1Aj

)
is non-increasing in aα.

Instead of recursive numerical integration, P∗ (Aj) can alternatively be computed by Monte Carlo simu-

lation of the multivariate normal Markov chain
(
∆i
j2, · · · ,∆i

jK

)
, 1 ≤ i ≤ I. This is preferable to recursive

numerical integration for K > 3; see [19, pp. 452-453] With P∗ (Aj) computed by Monte Carlo, we can again

use bisection search to solve (5) for aα.

3.3. Computation of dα̃

To compute the constrained MLE µ̃jk, note that the constraint
∑J
j=1 π̂j max1≤k≤K µjk ≤ γ is convex

in the µjk. Since the log-likelihood function is concave, its maximizer (µ̃j1, · · · , µ̃jK) subject to convex

constraints can be computed by using constrained convex optimization solvers, such as fmincon with the

�interior-point� option in MATLAB.

Since the function g (µ) =
∑J
j=1 πj max1≤k≤K µjk that de�nes the composite null hypothesis H∗

0 is not

smooth at the hyperplanes µjk = µjk′ , k ̸= k
′
, traditional likelihood theory that assumes a smooth region

for the null hypothesis as in Section 4.2.4 of [5] does not apply to the GLR statistic LI . In fact, 2LI is no
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Figure 1: Density of 2LI compared with that of χ2
1

longer asymptotically χ2
1, as shown in Fig. 1 that used 200,000 simulations to compute by Monte Carlo the

density function of 2LI in the case J = 3 and equal randomization of n = 1000 subjects to K = 3 treatments

with Bernoulli outcomes that have success rates p11 = p22 = p33 = 0.7 = γ, pjk = 0.69 for j ̸= k. Fig. 1

corresponds to the case (C1) with γ = 0.7 in Table 4, for which we use corrections, due to Cherno� [20] and

Self and Liang [21], of the χ2
1 approximation to the null distribution of twice the GLR statistic for testing

g (µ) = γ. Besides the central limit theorem, the main ingredient leading to the χ2
1 approximation when g

is smooth is the quadratic approximation of the GLR statistic around µ = µo with g (µo) = γ. When the

partial derivatives of g at µo have jump discontinuities, creating a �kink� (local cone) of the type mentioned

in [20] and [21] for the graph of the continuous function g near µo, the central limit theorem leads to the

following limiting distribution of twice the GLR:

inf
µ∈C0

{
(Z − µ)

′
(Z − µ)

}
, (8)

where Z is multivariate standard normal, I
(
θµo

)
= PDP

′
is the singular value decomposition of the Fisher

information matrix, and C0 is a cone with vertex at D1/2P
′
µo; see [21, p. 607]. In other words, the limiting

distribution is the same as that of the GLR test H0 : µ ∈ C0 based on Z; see [20].

For the special case of H∗
0 , g (µo) =

∑J
j=1 πj max1≤k≤K µ

o
jk and I

(
θµo

)
is a diagonal matrix with

diagonal elements ψ
′′
(
θµo

jk

)
. Suppose max1≤k≤K µ

o
jk is uniquely attained at k = kj , for every j. Then there

are no jump discontinuities of the gradient vector ∂g/∂µ at µo, and therefore the usual χ2
1 approximation

to 2LI still applies as n→ ∞. In other words, C0 in (8) can be expressed as a linear constraint of the form
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∑J
j=1 πjµj,kj = 0. On the other hand, if max1≤k≤K µ

o
jk is attained at mj treatments k1, · · · , kmj , then C0

is tantamount to the constraint
∑J
j=1 πj max

(
µj,k1 , · · · , µj,kmj

)
= 0. Using the approximation (8) to the

null distribution of 2LI , dα̃ can be determined as the 1 − α̃ quantile of (8) if πj , mj and k
1, · · · , kmj are

speci�ed. Although these parameters are not known a priori, πj can be replaced by its consistent estimate π̂j

in the determination of dα̃. However, because (µ̃j1, · · · , µ̃jK) can di�er by Op (1/
√
n) from

(
µoj1, · · · , µojK

)
,

which may not belong to H∗
0 ,

(
mj , k

1, · · · , kmj
)
cannot be estimated consistently. Feder [22] has derived

the distribution of twice GLR when µo is within Op (1/
√
n) of the boundary g (µ∗) = γ, showing that it

is basically a �noncentral version� of (8). For the special case of H∗
0 , we can use this result to derive the

following conservative estimate of
(
mj , k

1, · · · , kmj
)
.

Let k̃j = maxk∈Kj µ̃jk and let m̃j be the number of treatments k ∈ Kj such that µ̃jk ≥ µ̃j,kj − δj , where

δj = δIj is introduced in (1) and the �rst paragraph of Section 3.1. Note thatH
∗
0 involvesmax (µj1, · · · , µjK),

which is ≥ maxk∈K µjk for any subset K of {1, · · · ,K}. Hence, choosing K to be the subset Kj of surviving

treatments would lead to a conservative estimate of dα̃. Let k̃
(1), · · · , k̃(m̃j) denote these treatments. Since

√
njδj → ∞, it follows from [22] that replacing

(
πj ,mj , k

1, · · · , kmj
)
in dα̃ by

(
π̂j , m̃j , k̃

(1), · · · , k̃(m̃j)
)

for 1 ≤ j ≤ J yields an estimate d̃α̃ that is ≥ dα̃ + op (1). Therefore, we compute dα̃ somewhat con-

servatively by using Monte Carlo simulations of (8), in which πj , mj , k
1, · · · , kmj in the constraint∑J

j=1 πj max
(
µj,k1 , · · · , µj,kmj

)
= 0 are replaced by π̂j , m̃j , k̃

(1), · · · , k̃(m̃j) for 1 ≤ j ≤ J .

3.4. A simulation study of inferences for future patients

In this section we present a simulation study of the inferential procedures in Section 2.2 in the case of

K = J = 3, with k = j being the best treatment for biomarker class j. We take α = 0.1 and α̃ = 0.05. The

class sizes are proportional to 5 : 4 : 1 for n = 1000 subjects. We assume that pjk = 0.7 if j = k and the

following �ve con�gurations of parameters pjk for j ̸= k:

(C1) pjk = 0.69 for j ̸= k: Although each biomarker class has a unique best treatment, other treatments

are almost as good.

(C2) p12 = p23 = p31 = 0.69, p13 = p21 = p32 = 0.2: For each biomarker class, the best treatment has a

close competitor, but the remaining treatment is substantially worse.

(C3) pjk = 0.2 for j ̸= k: The best treatment is substantially better than the other treatments in each

biomarker class.

(C4) pjk = 0.45 for j ̸= k: This is a variant of (C3).

(C5) p12 = p23 = p31 = 0.5, p13 = p21 = p32 = 0.2.
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As in Section 3.1, we consider I = 5 analyses with ni − ni−1 = 200, for i = 1, · · · , 5. For each parameter

con�guration, we consider the probability pI = P
(∪J

j=1Aj

)
that the best treatment is not included in the

recommended set of treatments for some biomarker class, which is analogous to type I error, and the analog

of type II error pII = P
(∪J

j=1Bj
(
δ̄
)
̸= ∅

)
, which is the probability that the recommended set contains an

inferior treatment with pjk ≤ pj,kj − δ̄ for some j. Also given are pI,j = P (Aj) and pII,j = P
(
Bj

(
δ̄
)
̸= ∅

)
for each j. Table 3 gives the values of pI and pII, and also the expected size E |Kj | of the recommended set

of treatments for each biomarker class j, with δ̄ = 0.1. Also given are the probabilities of rejecting H∗
0 for

di�erent values of γ; in particular, the value γ = 0.7 corresponds to the type I error of the test. In addition,

Table 3 also gives the mean response rate, overall and for each (j, k) category, as in Table 1 and 2. Each

result is based on 10000 simulations.

Table 3 shows that pI (in the row �Overall�) indeed does not exceed the nominal value α = 10% in all

cases and that the type I error of the proposed test of H∗
0 (in the column γ = 0.70) is maintained below the

nominal value of α̃ = 5%. The type II error of the proposed test and the values pII,1, pII,2, pII,3, and pII

(in the row �Overall�) vary with the parameter con�gurations. The power of the GLR test of H∗
0 , under the

columns γ = 0.63 and γ = 0.65, are above 85% except for the parameter con�guration (C4) and (C5), where

they are close to 80%. The high values of pII,3 in (C4) and (C5) can be explained by the low prevalence of

biomarker class j = 3, resulting in an expected number of 100 (out of a total of n = 1000) patients falling in

the class. As a consequence, K3 contains an inferior treatment (with mean di�erence from the best exceeding

δ̄ = 0.1) with the high probability shown in pII,3. In fact, the values 2.25 and 1.82 for E |K3| in these cases

suggest that the expected number of inferior treatments is 1.25 or 0.82. On the other hand, even though

E |Kj | is near 3 for every j in (C1) and close to 2 in (C2), pII,j = 0 in (C1) because there is no treatment

whose mean di�ers from the best by more than 0.1, and pII,1 = pII,2 = 0, pII,3 = 0.6 in (C2) because there

is only one markedly inferior treatment.

The advantages of the proposed group sequential over the traditional design, which does not have interim

analysis and uses equal randomization, can be seen by comparing Table 3 with Table 4 that gives corre-

sponding results for the traditional design. Note that the traditional design is a special case of the group

sequential design in Section 2.2 with I = 1. Because equal randomization dilutes the sample size for the

best treatment, the power of the GLR test of H∗
0 in Table 4 is lower than that in Table 5, while the overall

response rate of patients in the trial is also substantially reduced as expected.

3.5. Is adaptive randomization really useful?

In their comparison of clinical trial designs with �xed sample sizes for testing whether a new treatment is

better than a control treatment, Korn and Freidlin [23] have found no bene�ts in using (outcome-) adaptive
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Table 3

Mean response rate for each treatment, probabilities pI,j and pII,j for subset selection in biomarker class j, expected subset size
E |Kj |, and probability of rejecting H∗

0 for γ = 0.70 (null), 0.65, 0.63 (alternative).

Marker Treatment γ in H∗
0

Class 1 2 3 pI,j pII,j E |Kj | 0.63 0.65 0.70

C1 1 0.70 0.69 0.69 2.50% 0.00% 2.89

(171.9) (164.2) (163.8)

2 0.69 0.70 0.69 2.66% 0.00% 2.89

(131.2) (137.3) (131.5)

3 0.69 0.69 0.70 2.83% 0.00% 2.90

(33.0) (33.0) (33.9)

Overall 0.694 (1000) 7.78% 0.00% 98.7% 85.4% 3.4%

C2 1 0.70 0.69 0.20 1.50% 0.00% 1.95

(238.6) (228.0) (33.3)

2 0.20 0.70 0.69 1.63% 0.00% 1.95

(27.0) (190.8) (182.2)

3 0.69 0.20 0.70 1.70% 6.15% 2.02

(44.5) (10.0) (45.6)

Overall 0.660 (1000) 4.75% 6.15% 99.1% 87.5% 3.7%

C3 1 0.70 0.20 0.20 0.00% 0.00% 1.00

(432.3) (33.8) (33.7)

2 0.20 0.70 0.20 0.00% 0.00% 1.00

(27.7) (344.8) (27.6)

3 0.20 0.20 0.70 0.00% 11.52% 1.12

(11.6) (11.6) (76.9)

Overall 0.627 (1000) 0.00% 11.52% 99.2% 88.1% 2.9%

C4 1 0.70 0.45 0.45 0.00% 3.42% 1.04

(391.6) (53.9) (54.3)

2 0.45 0.70 0.45 0.00% 9.10% 1.10

(49.1) (302.0) (48.9)

3 0.45 0.45 0.70 0.04% 79.98% 2.25

(22.4) (22.4) (55.3)

Overall 0.637 (1000) 0.04% 82.42% 96.3% 78.0% 2.3%

C5 1 0.70 0.50 0.20 0.00% 6.98% 1.07

(393.5) (73.0) (33.8)

2 0.20 0.70 0.50 0.00% 12.86% 1.13

(27.5) (305.5) (66.8)

3 0.50 0.20 0.70 0.12% 72.97% 1.82

(28.8) (11.2) (60.0)

Overall 0.630 (1000) 0.12% 78.09% 96.8% 79.8% 2.2%
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Table 4

Mean response rate for each treatment, probabilities pI,j and pII,j for subset selection in biomarker class j, expected subset size
E |Kj |, and probability of rejecting H∗

0 for γ = 0.70 (null), 0.65, 0.63 (alternative).

Marker Treatment γ in H∗
0

Class 1 2 3 pI,j pII,j E |Kj | 0.63 0.65 0.70

C1 1 0.70 0.69 0.69 0.71% 0.00% 2.96

(166.6) (166.6) (166.7)

2 0.69 0.70 0.69 0.66% 0.00% 2.96

(133.4) (133.4) (133.2)

3 0.69 0.69 0.70 0.80% 0.00% 2.96

(33.3) (33.3) (33.4)

Overall 0.693 (1000) 2.15% 0.00% 98.7% 85.4% 4.1%

C2 1 0.70 0.69 0.20 0.35% 0.00% 1.99

(166.7) (166.6) (166.7)

2 0.20 0.70 0.69 0.31% 0.00% 1.99

(133.2) (133.3) (133.3)

3 0.69 0.20 0.70 0.50% 1.23% 2.00

(33.3) (33.4) (33.4)

Overall 0.530 (1000) 1.16% 1.23% 95.3% 75.2% 4.3%

C3 1 0.70 0.20 0.20 0.00% 0.00% 1.00

(166.6) (166.5) (166.7)

2 0.20 0.70 0.20 0.00% 0.00% 1.00

(133.5) (133.2) (133.6)

3 0.20 0.20 0.70 0.00% 7.72% 1.09

(33.4) (33.3) (33.3)

Overall 0.366 (1000) 0.00% 7.72% 76.4% 48.4% 2.2%

C4 1 0.70 0.45 0.45 0.00% 2.87% 1.03

(166.8) (166.7) (166.7)

2 0.45 0.70 0.45 0.00% 8.76% 1.10

(133.3) (133.3) (133.4)

3 0.45 0.45 0.70 0.00% 81.66% 2.34

(33.3) (33.2) (33.3)

Overall 0.533 (1000) 0.00% 83.75% 77.1% 48.6% 2.6%

C5 1 0.70 0.50 0.20 0.00% 11.15% 1.11

(166.6) (166.4) (166.7)

2 0.20 0.70 0.50 0.00% 20.85% 1.21

(133.4) (133.3) (133.4)

3 0.50 0.20 0.70 0.00% 79.83% 1.84

(33.5) (33.3) (33.3)

Overall 0.467 (1000) 0.00% 85.82% 76.4% 48.9% 2.4%
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Table 5

Mean response rate for each treatment, probabilities pI,j and pII,j for subset selection in biomarker class j, expected subset size
E |Kj |, and probability of rejecting H∗

0 for γ = 0.70 (null), 0.65, 0.63 (alternative).

Marker Treatment γ in H∗
0

Class 1 2 3 pI,j pII,j E |Kj | 0.63 0.65 0.70

C1 1 0.70 0.69 0.69 2.55% 0.00% 2.89

(168.1) (166.1) (165.7)

2 0.69 0.70 0.69 2.84% 0.00% 2.88

(132.8) (134.3) (132.8)

3 0.69 0.69 0.70 2.90% 0.00% 2.90

(33.3) (33.3) (33.5)

Overall 0.693 (1000) 8.06% 0.00% 98.9% 85.5% 4.3%

C2 1 0.70 0.69 0.20 1.33% 0.00% 1.95

(235.2) (231.2) (33.6)

2 0.20 0.70 0.69 1.41% 0.00% 1.96

(27.6) (187.4) (184.9)

3 0.69 0.20 0.70 1.49% 0.84% 1.97

(43.1) (13.5) (43.4)

Overall 0.658 (1000) 4.17% 0.84% 99.0% 87.1% 4.1%

C3 1 0.70 0.20 0.20 0.00% 0.00% 1.00

(429.5) (35.3) (35.4)

2 0.20 0.70 0.20 0.00% 0.00% 1.00

(30.5) (339.2) (30.2)

3 0.20 0.20 0.70 0.00% 3.29% 1.04

(17.4) (17.3) (65.2)

Overall 0.617 (1000) 0.00% 3.29% 98.6% 85.6% 2.6%

C4 1 0.70 0.45 0.45 0.00% 1.04% 1.01

(348.9) (75.9) (75.1)

2 0.45 0.70 0.45 0.00% 4.11% 1.05

(69.4) (260.9) (69.8)

3 0.45 0.45 0.70 0.09% 71.94% 2.14

(29.5) (29.5) (40.9)

Overall 0.613 (1000) 0.09% 73.37% 91.1% 69.0% 2.2%

C5 1 0.70 0.50 0.20 0.00% 2.34% 1.02

(358.6) (106.8) (34.5)

2 0.20 0.70 0.50 0.00% 6.20% 1.06

(29.1) (273.1) (97.8)

3 0.50 0.20 0.70 0.07% 67.32% 1.70

(36.9) (16.0) (47.2)

Overall 0.612 (1000) 0.07% 70.06% 93.4% 72.9% 2.3%

20



instead of traditional equal randomization, �in terms of required sample sizes, the numbers and proportions

of patients having an inferior outcome.� Their results are in sharp contrast to the results of Tables 3 and

4. Note, however, that whereas Table 3 uses a group sequential design with I = 5 analyses and allows

treatment elimination at each analysis, Table 4 uses a �xed sample size design that corresponds to the

case I = 1. Following [23], it is natural to ask whether the advantages of the proposed design over the

traditional design are mainly due to the group sequential feature that allows early termination of inferior

treatments. We have therefore also tried the same group sequential design in conjunction with equal (instead

of adaptive) randomization for the surviving treatments in each biomarker class. Note that the threshold

aα for treatment elimination remains the same, irrespective of equal or adaptive randomization. Moreover,

the rejection threshold dα̃ for the group sequential GLR test with equal randomization can be determined

in the same way as in Section 3.4. Comparison of Table 3 with Table 5, which gives the corresponding

results for the group sequential design with equal randomization, shows that the marked improvements of

adaptive randomization (Table 3) over equal randomization (Table 4) are substantially diminished when a

group sequential design with early termination of signi�cantly inferior treatments is used.

4. Discussion

The emerging �eld of biomarker-guided personalized therapies is an exciting new direction in translational

medicine and poses new challenges to designing and analyzing clinical trials for their development and

validation. While traditional designs often require large sample sizes, adaptive Bayesian designs such as that

used by BATTLE, which �allows researchers to avoid being locked into a single, static protocol of the trial�,

can yield breakthroughs, as pointed out in an April 2010 editorial in Nature Reviews in Medicine on such

designs. In the same issue of the journal, Ledford [24] comments on these adaptive designs: �The approach has

been controversial, but is catching on with both researchers and regulators as companies struggle to combat

the nearly 50% failure rate of drugs in large, late-stage trials.� The BATTLE trial, however, is not associated

with new drug development that is funded by a pharmaceutical company. For new drug development, we

have described in Section 1 biomarker-guided accrual design for phase III trials. These designs are indeed

promising in �driving down the cost of clinical trials 50-fold� in comparison with traditional clinical trials,

which Ledford argues to be important in mitigating �the risk of developing a drug for these small numbers

of patients.� The adaptive accrual designs actually do not have such risk as they are targeted towards the

entire ITT population and switch to the Dx+ subpopulation only after the data show futility for ITT.

In the case of approved drugs, pharmaceutical companies would not sponsor clinical trials for developing

and testing biomarker-guided personalized treatment selection strategies. Funding for such trials can come
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from private foundations and government agencies as in the case of the BATTLE trial, or from the Patient-

Centered Outcomes Research Institute, established after the 2010 Patient Protection and A�ordable Care

Act to undertake comparative e�ectiveness research (CER). Fiore et al. [25] and Shih and Lavori [26] have

recently proposed to use (a) the infrastructure of clinical experiments in natural clinical settings, such as

POC (point of care) clinical trials, and (b) group sequential designs to conduct CER trials more easily

and at a much lower cost than the traditional randomized clinical trial approach. The innovative designs

introduced in Section 2.2 can be regarded as a continuation of that line of work, incorporating biomarkers

into CER for personalized treatment selection. Their development and implementation have also led to new

methodological advances in adaptive randomization, which is the focus of Section 2.1, and in sequential

subset selection and testing non-smooth multiparameter hypotheses, which is treated in Sections 2.2, 3.2

and 3.3. In particular, we have demonstrated the statistical e�ciency of the adaptive randomization rule

proposed in Section 2.2 as a modi�cation of the UCB rule in multi-arm bandit theory for clinical trials.

It is much simpler than the Bayesian adaptive randomization rule used in the BATTLE trial, and is also

convenient to use in conjunction with GLR statistics for group sequential testing and frequentist inference.

The group sequential design has an additional advantage that the cut-points used to de�ne the biomarker

classes do not have to be �nalized until analyzing the data from the trial up to the time of the �rst interim

analysis. The choice of these cut-points is normally based on data from previous early-phase trials with

relatively small sample sizes in the literature. For example, Kim et al. [11, pp. 51-52] describe the mea-

surement technology used in the BATTLE trial and the biomarker scoring methods used to develop the

classi�er. In particular, �combined expression of cytoplasmic and membrane staining� or �expression of nu-

clear staining� was examined for di�erent proteins, and �all expression was assessed using semiquantitative

analysis of intensity and extension� to derive a score ranging from 0 to 300, or expressed as a percentage for

nuclear expression. �Cytoplasmic and membrane expression scores >100 were considered positive for VEGF

and VEGFR-2, and scores >200 were considered positive for RXRβ and RXRγ.� Moreover, �a nuclear score

>30% was considered positive for RXRα, and a nuclear score >10% was considered positive for CyclinD1.�

Such semiquantitative classi�cation is �unsupervised learning� based on heuristics and convenience. A su-

pervised learning approach is proposed for BATTLE-2, which will �prespecify an extremely limited set of

markers and will use the �rst half of the study population (approximately 200 patients) to conduct prospec-

tive testing of biomarkers/signatures� to guide �the second half of the study (approximately 200 patients).�

Jiang et al. [27] have proposed to use the results of a phase III trial for a secondary analysis to identify the

cut-points for de�ning biomarker classes in a future study. The initial stage of the group sequential design in

Section 2.2 can be augmented to incorporate supervised learning of the biomarker classi�er with cut-points

chosen on the basis of clinical trial data up to the �rst interim analysis, which is analogous to the secondary
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analysis proposed in [27] and also to the �rst half of the BATTLE-2 design but is more �exible. Note that the

initial stage (prior to the �rst interim analysis) uses equal randomization to the K treatments in the absence

of a biomarker classi�er. This is equivalent to the hypothetical version of SOC in [7], which is assumed

to choose the treatments with equal probability. If one wants to test whether the BGS to be developed is

signi�cantly better than this hypothetical version of SOC, then one already has clinical trial data of the

SOC and does not need to rely on historical data. Therefore, in addition to its multiple objectives listed

in Section 2.2, the group sequential trial design proposed herein can also be used to build the biomarker

classi�ers on the basis of clinical trial data up to the �rst interim analysis and even to gather actual data

about the SOC. Its sample size should be large enough to accomplish these goals, but it can be funded as a

POC trial to improve the e�ectiveness of existing treatments, as discussed in the preceding paragraph.
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